亚达管道系统股份有限公司年产 2500 吨不 锈钢管生产线技改项目 竣工环境保护验收监测报告

亚达管道系统股份有限公司

2021年04月

建设单位法人代表: 项 光 清

建设单位:亚达管道系统股份有限公司(盖章)

电话: 13736487279

传真: /

邮编: 314000

地址: 嘉兴市南湖区新丰镇新大公路 399 号

目 录

1. 项目概况	1
2. 验收依据	1
2.1 建设项目环境保护相关法律、法规和规章制度	1
2.2 建设项目竣工环境保护验收技术规范	1
2.3 建设项目环境影响报告表(表)及其审批部门审批决定	1
2.4 其他相关文件	1
3. 项目建设情况	3
3.1 地理位置及平面布置	3
3.2 建设内容	6
3.3 主要原辅材料及燃料	6
3.4 水源及水平衡	7
3.5 工艺流程	8
3.6 项目变动情况	8
4. 环境保护措施	9
4.1 污染物治理/处置设施	9
4.2 其他环保措施	
4.3 环保设施投资及"三同时"落实情况	12
5. 环境影响报告表主要结论与建议及其审批部门审批决定	13
5.1 环境影响报告表主要结论与建议	13
5.2 审批部门审批决定	15
6. 验收执行标准	18
6.1 废水执行标准	18
6.2 废气执行标准	18
6.3 噪声执行标准	20
6.4 固废参照标准	20
6.5 总量控制指标	20
7. 验收监测内容	21
7.1 环境保护设施调试效果	21
8. 质量保证及质量控制	22
8.1 监测分析方法	22
8.2 监测仪器	23
8.3 人员资质	23
8.4 水质监测分析过程中的质量保证和质量控制	23
8.5 气体监测分析过程中的质量保证和质量控制	24
8.6 噪声监测分析过程中的质量保证和质量控制	24
9. 验收监测结果	25
9.1 生产工况	25
9.2 环境保护设施调试效果	25
10. 验收监测结论	38
10.1 环境保护设施调试效果	38
10.2 验收监测总结论	39

附件目录

- 附件 1. 亚达管道系统股份有限公司环评批复
- 附件 2. 亚达管道系统股份有限公司污水入网证明
- 附件 3. 亚达管道系统股份有限公司建设项目生产设备清单
- 附件 4. 亚达管道系统股份有限公司建设项目产量及原辅料统计表
- 附件 5. 亚达管道系统股份有限公司固废产生量及处置证明
- 附件 6. 亚达管道系统股份有限公司验收监测期间工况表
- 附件 7. 亚达管道系统股份有限公司 2019 年 6 月-2019 年 8 月水费发票
- 附件 8. 亚达管道系统股份有限公司油烟处理设施认证证书
- 附件 9. 现场照片
- 附件 10. 危废房照片
- 附件11. 亚达管道系统股份有限公司排污许可证

1. 项目概况

亚达管道系统股份有限公司成立于 2006 年,厂址位于嘉兴市南湖区新丰镇工业功能区新丰大道南侧,占地面积约 64329 平方米,建筑面积约 58726 平方米。企业主要从事不锈钢管、管件、阀门和法兰等的生产,建设项目由浙江省环境保护科学设计研究院编制(环评名称:浙江嘉兴亚达不锈钢制造有限公司年产不锈钢管 1100 吨、管件 50 万件、法兰 1500 吨和阀门 2 万台套项目环境影响报告表),2007 年 6 月 5 日,嘉兴市南湖区环境保护局以南环函[2007]92 号文对该项目环评进行了批复。批复产能为年产不锈钢管 1100 吨、管件 50 万件、法兰 1500 吨和阀门 2 万台套。2011 年 6 月 20 日,完成该项目的竣工环境保护验收。

企业原先管件(50万件/年)生产用不锈钢管需3600吨/年,全部外购。由于受成品及原材料市场价格及原材料品质等条件因素影响,企业生产发展受到制约且难以控制原料成本及品质,为此企业决定投资3000万元实施技改,在现有厂区内南侧空地上新建厂房,用于生产不锈钢管,作为企业自身生产管件的原材料,以一步控制原材料成本及产品品质,提升企业利润空间。项目投产后将形成年产2500吨不锈钢管的生产规模。另外项目还将新增一条喷涂烘干流水线,依据客户要求,对少部分高防腐要求的管件内壁进行喷涂,预计年处理量约1000件。

亚达管道系统股份有限公司于 2015 年 05 月由浙江冶金环境保护设计研究院有限公司完成了《亚达管道系统股份有限公司年产 2500 吨不锈钢管生产线技改项目环境影响报告表》。2015 年 6 月 18 日,嘉兴市南湖区环境保护局以南环建函[2015]94 号文对该项目提出审查意见。

2016年5月,该项目投入生产,2017年12月企业启动该项目环保验收工作过,由于废水处理设施问题,该项目未通过验收,要求进行整改,2019年10月,该项目整改完毕,再次进行环保验收工作,目前该工程项目主要生产设施和环保设施运行正常,具备了环保设施竣工验收条件。

受亚达管道系统股份有限公司的委托,嘉兴嘉卫检测科技有限公司承担该项目竣工环境保护验收监测工作。根据《建设项目竣工环境保护验收技术指南 污染影响类》的规定和要求,嘉兴嘉卫检测科技有限公司于 2019 年 10 月 24 日对该项目进行现场勘察,查阅相关技术资料,并在此基础上编制了该项目竣工环境保护验收监测方案。依据监测方案,嘉兴嘉卫检测科技有限公司于 2019 年 11 月 6-7

日分两个生产周期对该项目进行了现场监测和环境管理检查,在此基础上编写了 本报告。

2020年8月企业开展了该项目专家评审会,根据现场勘查,专家提出整改意见,企业于2020年8月开始进行整改,于2021年1月底正式整改完毕。受亚达管道系统股份有限公司的委托,于2021年2月1日-2日、4月1日-2日四个工作日对该项目进行部分监测内容进行重测和补测,在此基础上重新修正了本报告。

2. 验收依据

2.1 建设项目环境保护相关法律、法规和规章制度

- 1、《中华人民共和国环境保护法》(自2015年1月1日起施行);
- 2、《中华人民共和国环境噪声污染防治法(2018 修订)》, 2018 年 12 月 29 日 第十三届全国人民代表大会常务委员会第七次会议:
- 3、《中华人民共和国环境大气污染防治法(2018修订)》,2018年10月26日第十三届全国人民代表大会常务委员会第六次会议:
- 4、《中和人民共和国环境影响评价法》,中华人民共和国主席令第48号;
- 5、《中华人民共和国水污染防治法》(2017年6月27日第二次修正);
- 6、《中华人民共和国固体废物污染环境防治法》(2020年9月1日实施):
- 7、中华人民共和国国务院令第682号《国务院关于修改〈建设项目环境保护管理条例〉的决定》。

2.2 建设项目竣工环境保护验收技术规范

- 1、浙江省环境保护厅《浙江省环境保护厅建设项目竣工环境保护验收技术管理规 定》;
- 2、《关于发布〈建设项目竣工环境保护验收暂行办法〉的公告》(国环规环评[2017]4号):
- 3、《建设项目竣工环境保护验收技术指南 污染影响类》(生态环境部公告 2018 年第 9 号),2018 年 7 月 16 日。

2.3 建设项目环境影响报告表(表)及其审批部门审批决定

- 1、浙江冶金环境保护设计研究院有限公司《亚达管道系统股份有限公司年产 2500 吨不锈钢管生产线技改项目环境影响报告表》,2015年 05 月;
- 2、嘉兴市南湖区环境保护局 南环建函[2015]94号《关于亚达管道系统股份有限公司年产 2500 吨不锈钢管生产线技改项目环境影响报告表审查意见的函》,2015年6月18日;

2.4 其他相关文件

- 1、《污水综合排放标准》(GB8978-1996);
- 2、《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013);
- 3、《酸洗废水排放总铁浓度限值》(DB33/844-2011);

- 4、《大气污染物综合排放标准》(GB16297-1996);
- 5、《工业涂装工序大气污染物排放标准》(DB33/2146-2018);
- 6、《挥发性有机物无组织排放控制标准》(GB37822-2019);
- 7、《工业炉窑大气污染物排放标准》(GB9078-1996);
- 8、《关于印发浙江省工业炉窑大气污染综合治理实施方案的通知》(浙环函 [2019]315号);
- 9、《工业企业厂界环境噪声排放标准》(GB12348-2008);
- 10、《国家危险废物名录》(部令 第39号);
- 11、《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001);
- 12、《危险废物贮存污染控制标准》(GB18597-2001)。

3. 项目建设情况

3.1 地理位置及平面布置

亚达管道系统股份有限公司位于嘉兴市南湖区新丰镇新大公路 399 号,项目 北面为新大公路,路以北为农田;西面为竹林路,路以西为嘉兴市亚一达特种钢 铸造有限公司和农田;南面为农田;东面为农田。项目具体地理位置见图 3-1, 厂区平面布置及周边情况示意图见图 3-2 和图 3-3。

图 3-1 项目地理位置图

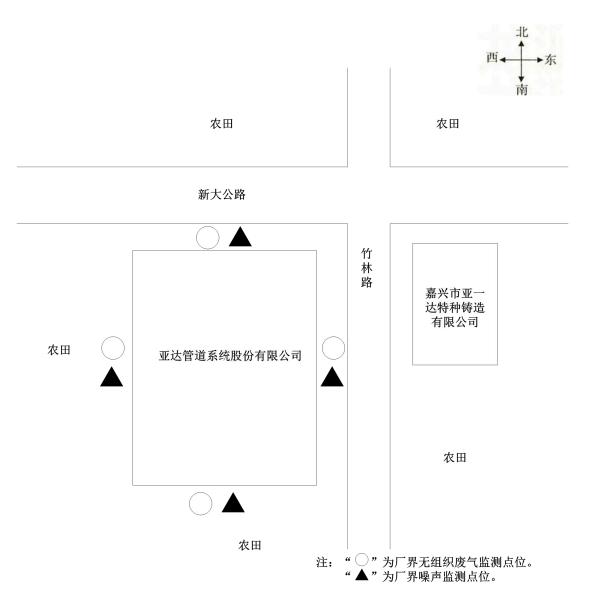
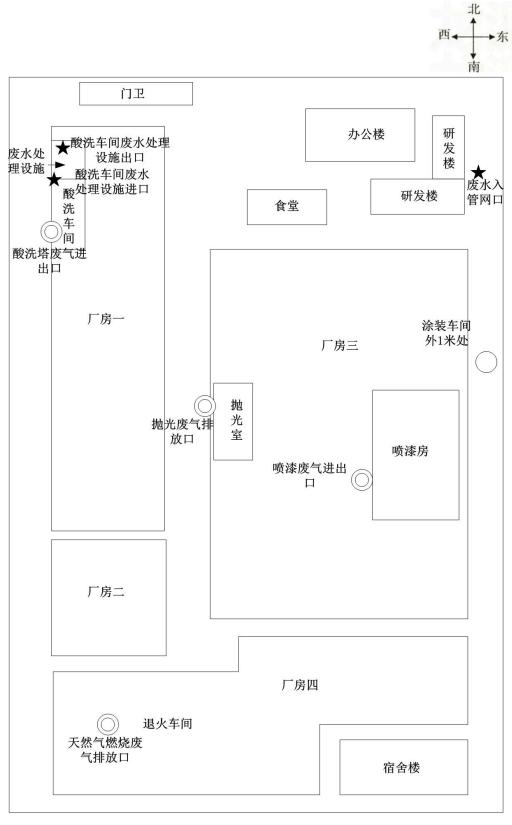



图3-2 厂区周边情况示意图

注: "○"为有组织废气监测点位。 "★"为废水监测点位。

图3-3 厂区平面布置图

3.2 建设内容

项目占地面积约64329平方米,建筑面积约58726平方米。项目总投资3000 万元实施技改,在现有厂区内南侧空地上新建厂房,用于生产不锈钢管,作为 企业自身生产管件的原材料,以一步控制原材料成本及产品品质,提升企业利 润空间。项目投产后将形成年产2500吨不锈钢管的生产规模。另外项目还将新 增一条喷涂流水线,依据客户要求,对少部分高防腐要求的管件内壁进行喷涂, 预计年处理量约 1000 件。建设项目主体生产设备见表 3-1,主要产品概况见表 3-2.

			· · · · · · · · · · · · · · · · · · ·	
序号	设备名称	环评设计数量(台/套)	实际数量(台/套)	与环评对照情况
1	液压拉拔机	2	2	一致
2	锯床	3	3	一致
3	涡流探伤机	1	1	一致
4	40 拉管机	2	2	一致
5	120 拉管机	1	1	一致
6	退火炉	2	2	一致
7	打标机	1	1	一致
8	矫直机	3	3	一致
9	喷涂烘干流水线	1	无	原先企业产品设计需要烘
10	喷涂流水线	/	1	干,目前产品无需烘干,只 需自然晾干,故喷涂烘干流 水线改为喷涂流水线,该变 动减少能耗,且不影响产 能,不属于重大变动。

表 3-1 主要生产设备一览表

注: 以上数据由企业提供,详见附件。

表 3-2 企业产品概况统计表

序号	产品名称	环评设计产量	2019年6月-12月产量
1	不锈钢管	2500 吨	1150 吨
2	喷漆管件	1000 件	470 件

注: 以上数据由企业提供,详见附件。

3.3 主要原辅材料及燃料

建设项目主要原辅材料消耗量见表 3-3。

表 3-4 主要原辅料消耗一览表

序号	原辅材料名称	环评设计年消耗量	2019 年 6 月-12 月消耗量
1	不锈钢管坯	3000 吨	1000 吨
2	白灰	3.0 吨	1.3 吨
3	浓硝酸 (98%)	12 吨	5 吨
4	氢氟酸 (55%)	2.0 吨	0.75 吨
5	环氧树脂漆	1.0吨	0.45 吨
6	稀释剂	0.5 吨	0.25 吨
7	水性环氧树脂漆	2.0 吨	0.35 吨
8	切削液	0.5吨	0.2吨

注: 企业 2019 年 6 月-2019 年 12 月原辅料消耗统计详见附件。

3.4 水源及水平衡

亚达管道系统股份有限公司废水主要为酸洗车间生产废水、喷漆水帘废水、水喷淋废水和职工生活废水。根据企业 2019 年 6 月-2019 年 8 月水费发票核算,用水量为 6971 吨,年用水量为 27924 吨,根据计算废水年排放量为 16423.2 吨。企业实际运行的水量平衡见图 3-4。

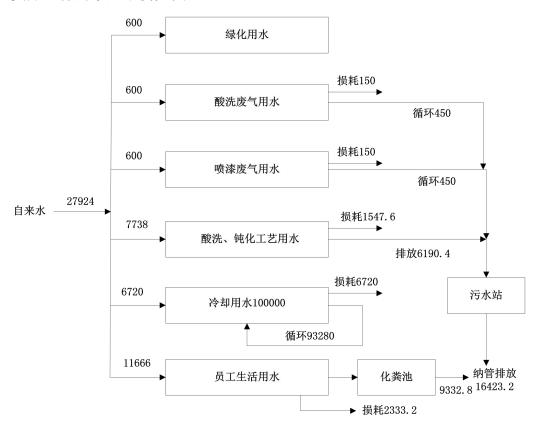
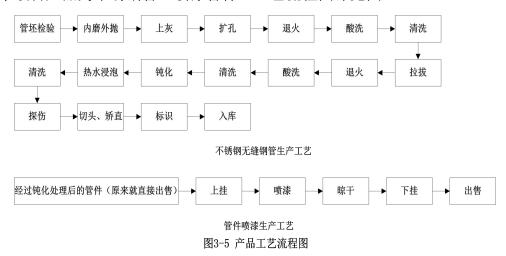



图3-4 企业全厂水平衡图

3.5 工艺流程

本项目产品为不锈钢管、喷漆管件。工艺流程图详见图 3-5。

3.6 项目变动情况

经自查,目前项目实际变更情况主要包括:目前项目实际喷漆废气治理措施由活性炭吸附工艺调整为水喷淋和 UV 光催化氧化工艺,调整后仍可满足废气治理要求;目前项目实际酸洗废气治理措施由两级碱液喷淋工艺调整为次氯酸钠喷淋、硫代硫酸钠喷淋和氢氧化钠喷淋三级喷淋净化工艺,酸洗废气治理措施有所提升。

综上所述,上述变更均未构成重大变动,因此本项目建设性质、规模、地 点、工艺和环境保护措施等五个方面均无重大变动。

4. 环境保护措施

4.1 污染物治理/处置设施

4.1.1 废水

本项目主要废水为酸洗车间生产废水、喷漆水帘废水、喷淋废水和职工生活废水。经单独处理设施处理后的钝化、酸洗废水、经污水站处理的喷淋废水、喷漆水帘废水和经化粪池等处理设施处理后的生活污水一起排入新大公路污水管网,最终经嘉兴市联合污水处理有限责任公司进一步处理后排海。废水处理设施由杭州兴洋环保科技有限公司设计安装,废水来源及处理方式见表 4-1。

污水来源	污染因子	排放方式	处理设施	排放去向
钝化、酸洗废 水	pH 值、化学需氧量、氨氮、悬浮物、 石油类、氟化物、总镍、总铬、总铁	间歇	污水站	
喷淋废水、喷 漆水帘废水	pH 值、化学需氧量、氨氮、悬浮物、 石油类	间歇	污水站	污水管网
生活废水	pH值、化学需氧量、氨氮、悬浮物	间歇	化粪池	

表 4-1 污水来源及处理方式一览表

废水处理工艺流程详见图 4-1。

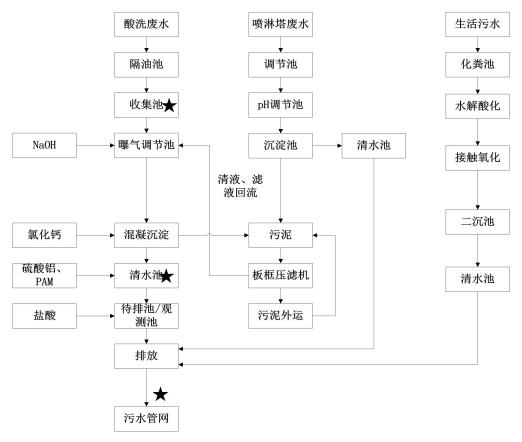


图3-5 企业废水处理设施流程图

4.1.2 废气

从生产工艺流程分析,该项目产生的废气主要为抛光粉尘、酸雾废气、喷漆废气、天然气燃烧废气和食堂油烟(根据《嘉兴市环境保护局局长办公会议纪要》[2013]20号文件,已安装油烟净化装置的,对油烟可不进行监测)。废气处理设施由杭州兴洋环保科技有限公司设计安装,废气来源及处理方式见表4-2。

工序	废气污染因子	排放方式	处理设施	排气筒高(米)	排放去向
抛光	颗粒物	间歇	布袋除尘	15	环境
酸洗	氢氟酸、氮氧化物	间歇	次氯酸钠喷淋、硫 代硫酸钠喷淋和氢 氧化钠喷淋三级喷 淋净化装置	15	环境
喷漆	甲苯、二甲苯、乙酸乙 酯、正丁醇	间歇	水喷淋+UV光催化 氧化	15	环境
退火	氮氧化物、二氧化物、 颗粒物、烟气黑度	间歇	/	15	环境
食堂	油烟	间歇	油烟净化装置	屋顶	环境

表 4-2 各工段产生废气主要污染物汇总

注: 企业酸洗废气污染物中氢氟酸以氟化物代替。

废气处理工艺流程详见图 4-2。

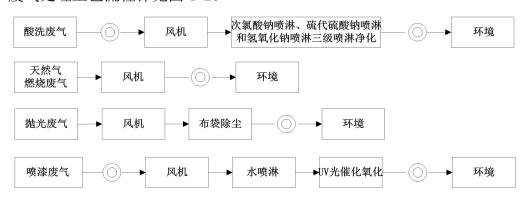


图4-2 企业废气处理设施流程图

4.1.3 噪声

本项目的噪声污染主要来源于拉拔机、锯床、拉管机等设备。企业优先选用低噪声设备;高噪声设备安装隔声减震装置;合理布局,将高噪声设备放置于厂区中央厂房;车间窗户为双层隔音玻璃,日常操作时处于关闭状态;日常对设备进行维护和保养,夜间不生产;厂区四周设有绿化带。以以上措施来降低噪声污染。

4.1.4 固(液)体废物

本项目产生的固体废弃物主要为含油抹布及手套(900-041-49)、废切削液(900-007-09)、废油(900-007-09)、槽渣(336-064-17)、沉淀污泥(336-064-17)、

漆渣(900-252-12)、饱和活性炭(900-039-49)、集尘灰、边角料和生活垃圾。 危险废物含油抹布及手套(900-041-49)、废切削液(900-007-09)、废油 (900-007-09)、槽渣(336-064-17)、沉淀污泥(336-064-17)、漆渣(900-252-12) 和饱和活性炭(900-039-49)放置于危废房内,废切削液(900-007-09)、废油 (900-007-09)委托温州云光废油处理有限公司进行处置;槽渣(336-064-17)、沉淀污泥(336-064-17)、漆渣(900-252-12)委托浙江金泰莱环保科技有限公司处置;目前企业废气处理设施改变,饱和活性炭(900-039-49)不再产生;含油抹布及手套混入生活垃圾(根据《国家危险废物名录》(2016版)危险废物豁免管理清单第9条:废弃的含油抹布、劳保用品全过程不按危险废物管理,混入生活垃圾);集尘灰和边角料收集后外卖综合利用;生活垃圾定点存放于加盖垃圾桶内,环卫部门定时清运。固废产生情况及处置情况详见表 4-3。

序号	种类 (名称)	产生工 序	属性	环评预估产 生量(吨/年)	2019年6月-12 月产生量(吨)	处置措施	接受单位 资质情况
1	含油抹布及手 套 (900-041-49)	机器擦 拭	危险 固废	0.1	6	委托环卫部门 统一清运	/
2	废切削液 (900-007-09)	废水隔 油处理	危险 固废	1.0	1	委托温州云光 废油处理有限	浙危废经 《3303000
3	废油 (900-007-09)	切削液 更换	危险 固废	0.1	2	公司进行处置	145》
4	槽渣 (336-064-17)	酸洗 槽、钝 化槽沉 渣	危险 固废	1.0	3	委托浙江金泰 莱环保科技有	浙危废经
5	沉淀污泥 (336-064-17)	废水处 理	危险 固废	5. 0	90	限公司处置	第 122 号
6	漆渣 (900-252-12)	喷漆工 序	危险 固废	0.8	1		
7	饱和活性炭 (900-039-49)	废气处 理	危险 固废	2. 0	不再产生	/	/
8	集尘灰	粉尘处 理	一般 固废	2.7	3	外卖综合利用	/
9	边角料	机加工	一般 固废	300	46	外卖综合利用	/
10	生活垃圾	日常生 活	一般 固废	4. 5	50	委托环卫部门 统一清运	/

表 4-3 固体废物产生及处置情况汇总表

4.2 其他环保措施

4.2.1 环境风险防范设施

企业已制订应急措施,防止突发性事故对周围环境的影响。

注:各固体废物产生量均由企业所提供,详见附件。

4.2.2 在线监测装置

企业目前无在线监测装置。

4.2.3 其他设施

项目环境影响报告表及审批部门审批决定中对其他环保设施无要求。企业周 边敏感点均已拆迁,无需监测敏感点。

4.3 环保设施投资及"三同时"落实情况

该项目总投资 3000 万元,环保投资 85 万元,约占工程总投资的 2.83%,环保投资情况见表 4-4。

表 4-4 工程环保设施投资情况

	1. 24.20.27 11. 22
环保设施名称	实际投资 (万元)
废水治理	10
废气治理	60
噪声治理	10
固废治理	5
合计	85

5. 环境影响报告表主要结论与建议及其审批部门审批决定

5.1 环境影响报告表主要结论与建议

环评要求	实际建设落实情况	备注
性质:技术改造 规模:年产2500吨不锈钢管、1000件管 件内壁喷涂 建设地址:嘉兴市南湖区新丰镇工业功能 区新丰大道南侧、竹林路西侧	性质:技术改造 规模:年产 2500 吨不锈钢管、1000 件管件内壁 喷涂 建设地址:嘉兴市南湖区新丰镇新大公路 399 号	己落实。
废水:要求厂区做好清污分流、雨污分流,雨水分流,雨水经相应的雨水管收集后就近排入附近河道;生产废水中酸洗钝化废水经中和、加药混凝沉淀处理达到相应标准后,再和其他废水一并加药混凝沉淀、砂滤后纳管,最终经嘉兴市污水处理工程统一处理达标后排海。	废水:该项目已实行清污分流,雨污分流。雨水经雨水管收集后就近排入附近河道。废水为酸洗车间生产废水、喷漆水帘废水、水喷淋废水和职工生活废水。经单独处理设施处理后的钝化、酸洗废水、经污水站处理的喷淋废水、喷漆水帘废水和经化粪池等处理设施处理后的生活污水一起排入新大公路污水管网,最终经嘉兴市联合污水处理有限责任公司进一步处理后排海。该项目酸洗车间废水处理设施出口污染物六价铬、总镍和总铬浓度日均值均低于GB8978-1996《污水综合排放标准》表1标准:废水入管网口污染物pH值、悬浮物、化学需氧量、石油类和氟化物浓度日均值(范围)均低于GB8978-1996《污水综合排放标准》表4三级标准,氨氮浓度日均值均低于DB33/887-2013《工业企业废水氮、磷污染物间接排放限值》表1中的其他企业间接排放限值,总铁浓度日均值均低于DB33/844-2011《酸洗废水排放总铁浓度限值》中的二级标准。	己落实。
废气:要求企业抛光粉尘经捕集沉降处理后于 15 米高排气筒排放。酸洗废气经捕集两级碱喷淋处理后于 15 米高排气筒排放。喷漆烘干废气捕集后经活性炭吸附处理后于 15 米高排气筒排放。天然气燃烧废气通过不低于 8 米的排气筒排放。食堂油烟配置油烟净化装置处理后排放。要求厂房一设置 50 米卫生防护距离,喷漆车间和酸洗车间分别设置 100 米卫生防护距离。	废气: 抛光工序在封闭式的抛光房内进行, 抛光粉尘经收集后经布袋除尘处理后通过 15 米 高排气筒排放。 酸洗废气收集后经次氯酸钠喷淋、硫代硫酸 钠喷淋和氢氧化钠喷淋三级喷淋净化装置处理后 通过 15 米高排气筒排放。 调漆、喷漆等工序在封闭式喷漆房内进行, 喷漆废气收集后经水喷淋, 一次。 。	项气由附为W化废施液调酸代淋钠喷艺治所已目治活工水光工气由喷整钠硫和喷淋,理提落喷理性艺喷催艺治两淋为喷酸氢淋净洗措升实漆措炭调淋化酸理级工次、钠氧三化废施其废施吸整和氧洗措碱艺氯硫喷化级工气有余

	二级标准,烟尘浓度均低于 GB9078-1996《工业炉窑大气污染物排放标准》中二级排放标准,同时天然气燃烧废气排放口颗粒物、二氧化硫、氮氧化物的排放浓度也满足《关于印发浙江省工业炉窑大气污染综合治理实施方案的通知》(浙环函[2019]315 号)中颗粒物、二氧化硫、氮氧化物排放限值分别不高于 30、200、300 毫克/立方米的要求。 该项目涂装车间外非甲烷总烃无组织监控浓度最大值低于 GB37822-2019《挥发性有机物无组织排放控制标准》附录 A表 A.1 厂区内 VOCS 无组织排放限值特别排放限值。 厂界无组织废气污染物苯系物(甲苯、二甲苯)、乙酸乙酯、非甲烷总烃厂界无组织监控浓度最大值低于 DB33/2146-2018《工业涂装工序大气污染物排放标准》表 6 企业边界大气污染物浓度限值,颗粒物、氮氧化物和氟化物浓度最大值低于 GB16297-1996《大气污染物综合排放标准》表 2 无组织排放监控浓度限值。	
噪声:要求企业优先选用高效低噪设备;高噪声设备加装减震基础,相应的电机设置隔声罩;合理布局,将高噪声设备远离厂界布置;各车间窗户设置成双层隔音玻璃,日常密闭操作;加强设备的维护,确保设备处于良好的运转状态,杜绝因设备不正常运转时产生的高噪声现象,夜间不生产。	噪声:企业优先选用低噪声设备;高噪声设备安装隔声减震装置;合理布局,将高噪声设备放置于厂区中央厂房;车间窗户为双层隔音玻璃,日常操作时处于关闭状态;日常对设备进行维护和保养,夜间不生产;厂区四周设有绿化带。亚达管道系统股份有限公司东、南、西、北厂界二日的昼间噪声均达到GB12348-2008《工业企业厂界环境噪声排放标准》2类标准。	己落实。
固体废物:要要求企业废抹布(900-041-49)、废切削液(900-007-09)、废油(900-007-09)、槽渣(346-064-17)、流淀污泥(346-064-17)、漆渣(900-252-12)、饱和活性炭(900-039-49)等收集后暂存于仓库,委托有资质单位进行处置:集尘灰和边角料收集后外卖综合利用;生活垃圾放置于加盖垃圾桶内,由环卫部门统一清运。要求厂区内设置危废贮存场所,并按照GB18597-2001《危险废物贮存污染控制标准》中的规定做好防雨淋、防渗、防流失措施,避免污染周围水体及土壤,同时建立完善的台帐制度,落实危废转移联单制度。	固废:企业产生的危险废物放置于危废房内,废切削液(900-007-09)、废油(900-007-09)。委托温州云光废油处理有限公司进行处置;槽渣(336-064-17)、流滤污泥(336-064-17)、漆渣(900-252-12)委托浙江金泰莱环保科技有限公司处置;目前企业废气处理设施改变,饱和活性炭(900-039-49)不再产生;含油抹布及手套混入生活垃圾(根据《国家危险废物名录》(2016版)危险废物豁免管理清单第9条:废弃的含油抹布、劳保用品全过程不按危险废物管理,混入生活垃圾)。 —般固废集尘灰和边角料收集后外卖综合利用;生活垃圾定点存放于加盖垃圾桶内,环卫部门定时清运。 该企业已经设置规范的危废储存场所,仓库做到"三防"措施,地面做好硬化处理,门口规范了标识,房门加锁,专人管理。	已落实。
总量控制:企业本项目总量控制指标为:废水排放量 4825 吨/年,化学需氧量0.579 吨/年,氨氮 0.1206 吨/年;颗粒物0.30 吨/年,二氧化硫 0.008 吨/年,氮氧化物 0.74 吨/年,VOCs0.168 吨/年(废水提标后化学需氧量 0.241 吨/年,氨氮 0.0241 吨/年)。企业全厂总量控制指标为:废水排放量16705 吨/年,化学需氧量 2.004 吨/年,氨氮 0.4176 吨/年;颗粒物 0.79 吨/年,二氧化硫 0.059 吨/年,氮氧化物1.179 吨/年,VOCs0.168 吨/年(废水提标后化学需氧量 0.835 吨/年,氨氮 0.0835 吨/年)。	总量控制:亚达管道系统股份有限公司全厂废水排放总量为16423.2吨/年,化学需氧量排放总量为0.821吨/年,氨氮排放总量为0.0821吨/年,达到全厂总量控制指标。本项目颗粒物排放总量为0.274吨/年,二氧化硫排放总量为0.004吨/年,氮氧化物排放总量为0.075吨/年,V0Cs排放总量为0.115吨/年,达到本项目总量控制指标。	已落实。

5.2 审批部门审批决定

嘉兴市南湖区环境保护局于 2015 年 6 月 18 日以(南环建函[2015]94 号)对本项目进行审批受理,具体如下:

亚达管道系统股份有限公司:

你公司《关于要求对亚达管道系统股份有限公司年产 2500 吨不锈钢管生产线 技改项目环境影响报告表进行审批的函》及其他相关材料收悉。根据《中华人民 共和国环境影响评价法》、《建设项目环境保护管理条例》、《浙江省建设项目 环境保护管理办法》等法律法规,经研究,现将我局审查意见函复如下:

- 一、根据你公司委托浙江冶金环境保护设计研究院有限公司编制的《亚达管道系统股份有限公司年产 2500 吨不锈钢管生产线技改项目环境影响报告表》(以下简称《环境影响报告表》)及落实技改项目环保措施的法人承诺、浙江省企业投资项目变更通知书(技术改造)(南经商[2014]113号)等相关材料,以及本项目环评行政许可公示意见反馈情况,在本项目符合产业政策与产业发展规划、选址符合城市总体规划和区域土地利用规划等前提下,原则同意《环境影响报告表》结论。项目经投资主管部门依法审批后,你公司须严格按照《环境影响报告表》所列建设项目的性质、规模、地点、环保对策措施及要求实施项目建设。
- 二、项目总投资 3000 万元,在现有厂房二和厂房三南侧空地上新建一座厂房,建筑面积 6719.5 平方米,用于布置不锈钢管生产项目的机加工设备,年产不锈钢管 2500 吨;在厂房三内新增一条喷涂烘干流水线对少部分管件内壁进行喷涂,年处理量约 1000 件。建设地点位于嘉兴市南湖区新丰镇工业功能区新大公路南侧、竹林路西侧。
- 三、项目须采用先进工艺、技术和装备,提高自动化控制水平。实施清洁生产,加强生产全过程管理、降低能耗物耗,减少各种污染物产生量和排放量,并重点做好以下工作。
- 1、加强废水污染防治。项目排水要求清污分流、雨污分流,酸洗钝化工艺废水、废气处理废水、喷漆水帘废水等生产废水和生活污水经预处理后全部纳入嘉兴市污水处理工程管网,进行集中处理,不得另设排污口。污水排放执行《污水综合排放标准》(GB8978-1996)三级标准,其中氨氮执行《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013),金属镍和总铬执行《污水综合排放标

- 准》(GB8978-1996)中第一类污染物最高允许排放浓度,总铁执行《酸洗废水排放总铁浓度限值》(DB33/844-2011)中的二级标准。
- 2、加强废气污染防治。生产过程中产生的抛光粉尘、酸雾废气、喷漆烘干废气经收集净化处理后高空排放,排气筒高度不得低于 15 米,NOx、二氧化硫、颗粒物、甲苯、氟化物等废气排放执行《大气污染物综合排放标准》(GB16297-1996)中新污染源大气污染物排放限值二级标准;正丁醇和醋酸丁酯排放执行环评计算标准;退火炉采用天然气为燃料,燃烧废气经收集后高空排放,排放高度不低于8米,废气排放执行《工业炉窑大气污染物排放标准》(GB9078-1996)中二级排放标准;食堂产生的油烟废气必须经国家认可的净化装置处理,确保废气达到《饮食业油烟排放标准(试行)》(GB18483-2001)标准。
- 3、加强噪声污染防治。合理布局,选用低噪声设备同时按照环评要求采用有效的隔声、防振措施,各厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准。严格落实生产班制,夜间(22:00-次日6:00)禁止生产。
- 4、加强固废污染防治。按"资源化、减量化、无害化"原则,落实各类固废的收集处理处置和综合利用措施,一般固废的贮存和处置必须符合《一般工业固体废物贮存、处置污染控制标准》(GB18599-2001)的要求。废抹布、欺诈、饱和活性炭、槽渣、沉淀污泥、废切削液、废油等危险废物应根据嘉政发[2017]67号文件,遵循集中处置、就近处置原则,委托有资质单位进行妥善处置,同时必须执行危险废物转移联单制度并报环保部门备案。在厂内的临时贮存设施必须遵循《危险废物贮存污染控制标准》(GB18597-2001)中的规定,采取防风、防雨、防渗透等措施,并按照国家有关固废处置的技术规定,确保处置过程不对环境造成二次污染。
- 5、加强施工期污染防治。合理安排施工时间,文明施工,施工期噪声执行《建筑施工场界噪声排放标准》(GB12523-2011)标准。禁止夜间施工作业,因工艺要求确需夜间作业的须取得环保部门批准,并向社会公告。物料堆场要远离敏感区,以减少扬尘对周围环境的影响。施工人员的生活污水和生活垃圾要集中收集处理。做好水土保持及施工后的生态恢复工作。
 - 四、严格落实污染物排放总量控制措施。根据《环境影响报告表》结论,本

项目主要污染物总量控制指标为废水排放量 4825 吨/年,化学需氧量 0.579 吨/年,氨氮 0.1206 吨/年;二氧化硫 0.008 吨/年,氮氧化物 0.74 吨/年。本项目实施后,企业的主要污染物总量控制指标为废水排放量 16705 吨/年,化学需氧量 2.004 吨/年,氨氮 0.4176 吨/年;二氧化硫 0.059 吨/年,氮氧化物 1.179 吨/年。排污权指标按《南湖区排污权有偿使用和交易办法》(南政办发[2015]15 号)规定,经交易后才能使用。

五、根据《环境影响报告表》计算结果,本项目不需设置大气环境防护距离, 其他各类防护距离要求,请业主、当地政府和有关部门按国家卫生、安全、产业 等主管部门相关规定予以落实。

方、根据《中华人民共和国环境影响评价法》等相关法律法规的规定,若项目的性质、规模、地点、采用的生产工艺或者防治污染、防止生态破坏的措施发生重大变动的,应依法重新报批项目环评文件。自批准之日起超过5年方决定该项目开工建设尚未,其环评文件应当报我局重新审核。在项目建设、运行过程中产生不符合经审批的环评文件情形的,应依法办理相关环保手续。

以上意见及《环境影响报告表》提出的各项污染防治和风险防治措施,你公司应在项目设计、建设、运行和管理中认真予以落实,确保在项目建设和运营过程中的环境安全和社会稳定。你公司须严格执行环保"三同时"制度,落实法人承诺,并须按规定向我局申请建设项目环境保护设施竣工验收,经验收合格后方可正式投入生产。

6. 验收执行标准

6.1 废水执行标准

该项目车间处理设施排放口污染物六价铬、总镍和总铬执行 GB8978-1996《污水综合排放标准》表 1 标准;废水入管网口污染物执行 GB8978-1996《污水综合排放标准》表 4 三级标准和表 1 标准,其中氨氮执行 DB33/887-2013《工业企业废水氮、磷污染物间接排放限值》表 1 中的其他企业间接排放限值,总铁执行 DB33/844-2011《酸洗废水排放总铁浓度限值》中的二级标准。具体标准值间表 6-1。

		The state of the s
污染物	排放标准值 (mg/L)	引用标准
总镍	1.0	
六价铬	0. 5	GB8978-1996《污水综合排放标准》表 1 标准
总铬	1.5	
悬浮物	400	
化学需氧量	500	
石油类	20	GB8978-1996《污水综合排放标准》表 4 三级标准
氟化物	20	
pH 值	6-9 (无量纲)	
氨氮	35	DB33/887-2013《工业企业废水氮、磷污染物间接排放限值》表 1 中的其他企业间接排放限值
总铁	10	DB33/844-2011《酸洗废水排放总铁浓度限值》中的二级标准

表 6-1 废水入网标准

6.2 废气执行标准

6.2.1 有组织废气

该项目有组织废气中苯系物(二甲苯、甲苯)、乙酸酯类(乙酸乙酯)、非甲烷总烃(正丁醇)执行 DB33/2146-2018《工业涂装工序大气污染物排放标准》表 2 大气污染物特别排放限值,二氧化硫、氮氧化物、氟化物和颗粒物执行 GB16297-1996《大气污染物综合排放标准》表 2 二级标准,天然气燃烧废气中烟尘执行 GB9078-1996《工业炉窑大气污染物排放标准》中二级排放标准。天然气燃烧废气于 2019 年要求执行《关于印发浙江省工业炉窑大气污染综合治理实施方案的通知》(浙环函[2019]315 号)中颗粒物、二氧化硫、氮氧化物排放限值。废气执行标准限值见表 6-2。

表 6-2 有组织废气污染物排放标准

で - 1125/12 (113次間) 1125/12 112						
污染物	最高允许排放浓	排气筒高度	允许排放速率	标准来源		
17未10	度 (mg/m³)	(米)	(kg/h)	小1 庄木7/赤		
苯系物(二甲 苯、甲苯)	20	/	/	DB33/2146-2018《工业涂装工序大气污染		
乙酸酯类(乙酸乙酯)	50	/	/	物排放标准》表 2 大气污染物特别排放限 值		
非甲烷总烃(正 丁醇)	60	/	/	IE.		
二氧化硫	550	15	2.6			
氮氧化物	240	15	0.77	GB16297-1996《大气污染物综合排放标准》		
氟化物	9. 0	15	0.10	表2二级标准		
颗粒物	120	15	3.5			
烟尘	200	15	/	GB9078-1996《工业炉窑大气污染物排放标准》中二级排放标准		
颗粒物 (天然气燃烧)	30	15	/	《关于印发浙江省工业炉窑大气污染综合		
二氧化硫 (天然气燃烧)	200	15	/	治理实施方案的通知》(浙环函[2019]315 号)中颗粒物、二氧化硫、氮氧化物排放		
氮氧化物 (天然气燃烧)	300	15	/	限值		

6.2.2 无组织废气

该项目涂装车间外 1 米处污染物非甲烷总烃执行 GB 37822-2019《挥发性有机物无组织排放控制标准》附录 A 中特别排放限值。

无组织废气中苯系物(甲苯、二甲苯)、乙酸乙酯、非甲烷总烃执行 DB33/2146-2018《工业涂装工序大气污染物排放标准》表 6 企业边界大气污染物 浓度限值,颗粒物、氮氧化物和氟化物执行 GB16297-1996《大气污染物综合排放标准》表 2 无组织排放监控浓度限值,乙酸乙酯和正丁醇参照环评标准。具体标准值见表 6-3 和表 6-4。

表 6-3 无组织废气排放标准

污染物	无组织监控点浓度限 值(mg/m³)	无组织排放监控位置	引用标准
非甲烷总烃 (时均)	6	在涂装车间外1米处设 置监控点	GB 37822-2019《挥发性有机物无组织排放控制标准》附录 A 中特别排放限值

表 6-4 无组织废气排放标准

污染物	无组织监控点浓度限值(mg/m³)	引用标准
苯系物(甲苯、二甲苯)	2. 0	DB33/2146-2018《工业涂装工序大气污
乙酸乙酯	1. 0	操物排放标准》表6企业边界大气污
非甲烷总烃	4. 0	染物浓度限值
氮氧化物	0. 12	 GB16297-1996《大气污染物综合排放
氟化物	0.02	标准》表2无组织排放监控浓度限值
颗粒物	1.0	你性// 衣 2 儿组织计放血红机反散值

6.3 噪声执行标准

该项目东、南、西、北厂界噪声执行 GB12348-2008《工业企业厂界环境噪声排放标准》2 类标准。噪声执行标准见表 6-5。

表 6-5 厂界噪声执行标准

监测对象	项目	单位	限值	引用标准
东、南、西、北厂界	等效 A 声级	dB(A)	60 (昼间)	GB12348-2008《工业企业厂界环境噪声排 放标准》2类标准

6.4 固废参照标准

固体废弃物属性判定依据《国家危险废物名录》。一般固体废弃物的排放执行 GB18597-2001《危险废物贮存污染控制标准》(2013 年修订)、GB18599-2001《一般工业固体废物贮存、处置场污染控制标准》和《中华人民共和国固体废物污染环境防治法》(2013 年修订)中的有关规定。

6.5 总量控制指标

根据亚达管道系统股份有限公司《亚达管道系统股份有限公司年产 2500 吨不锈钢管生产线技改项目环境影响报告表》,本项目主要污染物总量控制指标为废水排放量 4825 吨/年,化学需氧量 0.579 吨/年,氨氮 0.1206 吨/年;二氧化硫 0.008 吨/年,氮氧化物 0.74 吨/年,V0Cs0.168 吨/年。本项目实施后,企业的主要污染物总量控制指标为废水排放量 16705 吨/年,化学需氧量 2.004 吨/年,氨 0.4176 吨/年;二氧化硫 0.059 吨/年,氮氧化物 1.179 吨/年。

7. 验收监测内容

7.1 环境保护设施调试效果

根据试生产期间的调试运行情况,本项目环保治理设施均能正常运行。竣工 验收废水监测数据能达到相关排放标准。具体检测内容如下:

7.1.1 废水

项目废水监测内容及频次见表 7-1,废水监测点位图详见图 3-3。

ベ・エ 次小皿の行行 次次の						
监测点位	污染物名称	监测频次				
酸洗车间废水处 理设施进口	石油类、总镍、总铬、总铁、氟化物	监测2天,每天4次				
酸洗车间废水处 理设施出口	石油类、总镍、总铬、总铁、氟化物	监测2天,每天4次				
废水入管网口	pH 值、化学需氧量、氨氮、悬浮物、石油类、氟化物、总镍、 总铬、总铁	监测2天,每天4次				

表 7-1 废水监测内容及频次

7.1.2 废气

废气监测内容频次详见表 7-2。

监测对象	污染物名称	监测点位	监测频次
有组织排放废气	氮氧化物、氟化物	酸洗废气处理设施进口	监测2天,每天3次
有组织排放废气	氮氧化物、氟化物	酸洗废气处理设施出口	监测2天,每天3次
有组织排放废气	烟尘、二氧化硫、氮氧化物	天然气燃烧废气排放口	监测2天,每天3次
有组织排放废气	颗粒物	抛光废气排放口	监测2天,每天3次
有组织排放废气	甲苯、二甲苯、乙酸乙酯、正丁醇	喷漆废气处理设施进口	监测2天,每天3次
有组织排放废气	甲苯、二甲苯、乙酸乙酯、正丁醇	喷漆废气处理设施出口	监测2天,每天3次
无组织排放废气	非甲烷总烃	涂装车间外1米处	监测2天,每天4次
无组织排放废气	甲苯、二甲苯、乙酸乙酯、正丁醇、颗 粒物、氟化物、氮氧化物、非甲烷总烃	项目厂界四周各设 1 个 监测点	监测2天,每天4次

表 7-2 废气监测内容及频次

7.1.3 厂界噪声监测

监测对象 厂界噪声

在厂界四周布设4个监测点位,东侧、南侧、西侧和北侧各设1个监测点位,在厂界围墙外1米处,传声器位置高于墙体并指向声源处,监测2天,昼间各监测2次。噪声监测内容见表7-3,噪声监测点位图详见图3-2。

スープ 亜例り行及皿例例の	
监测点位	监测频次
企业厂界四周各设1个监测点位	监测2天,昼间各监测2次

表 7-3 监测内容及监测频次

8. 质量保证及质量控制

8.1 监测分析方法

表 8-1 监测分析方法一览表

类别	项目名称	方法依据	仪器设备
大加	pH 值	水质 pH 值的测定 玻璃电极法 GB/T 6920-1986	以帝以奋 pH 计
	化学需氧量	水质 化学需氧量的测定 重铬酸盐法 GB/T 828-2017	酸式滴定管
	氟化物	水质 氟化物的测定离子选择电极法 GB/T 7484-1987	pH计
	氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009	紫外可见分光光度计
	总镍	水质 镍的测定 火焰原子吸收分光光度法 GB/T 11912-1989	原子分光光度计
废水	总铁	水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-1989	原子分光光度计
	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987	紫外可见分光光度计
	悬浮物	水质 悬浮物的测定 重量法 GB/T 11901-1989	电子天平
	石油类	石油类和动植物油类的测定 红外分光光度法 HJ 637-2012	红外分光测油仪
	总铬	火焰原子吸收法《水和废水监测分析方法》(第四版增补版)国家环境保护总局 (2006年)	原子吸收分光光度计
	二氧化硫	固定污染源排气中二氧化硫的测定 定电位电解法 HJ/T 57-2000	烟尘测试仪
	氮氧化物	固定污染源废气 氮氧化物的测定 定电位电解法 HJ 693-2014	烟尘测试仪
	烟尘	锅炉烟尘测试方法 GB/T 5468-1991	电子天平
	颗粒物	固定污染源排气中颗粒物测定与气态污染物采样方法 GB/T 16157-1996	电子天平
- 	氟化物	大气固定污染源 氟化物的测定 离子选择电极法 HJ/T 67-2001	pH th
有组织 废气	甲苯	环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法 HJ 584-2010	气相色谱仪
	二甲苯	环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法 HJ 584-2010	气相色谱仪
	乙酸乙酯	工作场所空气有毒物质测定 饱和脂肪族酯类化合物 GBZ/T 160.63-2007	气相色谱仪
	正丁醇	工作场所空气有毒物质测定 醇类化合物 GBZ/T 160.48-2007	气相色谱仪
	烟气黑度	固定污染源排放烟气黑度的测定 林格曼烟气黑度图法 HJ/T 398-2007	烟气检测望远镜
	颗粒物	环境空气 总悬浮颗粒物的测定 重量法 GB/T 15432-1995	电子天平
	氟化物	环境空气 氟化物的测定 滤膜采样氟离子选择电极法 HJ 480-2009	pH it
	甲苯	环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法 HJ 584-2010	气相色谱仪
无组织	二甲苯	环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法 HJ 584-2010	气相色谱仪
废气	乙酸乙酯	工作场所空气有毒物质测定 饱和脂肪族酯类化合物 GBZ/T 160.63-2007	气相色谱仪
	正丁醇	工作场所空气有毒物质测定 醇类化合物 GBZ/T 160.48-2007	气相色谱仪
	氮氧化物	环境空气 氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘 乙二胺分光光度法 HJ 479-2009	紫外可见分光光度计
	非甲烷总烃	环境空气 总烃、甲烷和非甲烷总烃的测定直接进样-气相 色谱法 HJ 604-2017	气相色谱仪
噪声	厂界噪声	工业企业厂界环境噪声排放标准 GB12348-2008	噪声频谱分析仪

8.2 监测仪器

表 8-2 监测仪器一览表

仪器名称	规格型号	监测因子	检定或校准情况
pH it	PHS-3B	pH 值、氟化物(气)、氟化物(水)	检定合格
电子分析天平	BT25S	悬浮物、颗粒物、烟尘	检定合格
酸式滴定管	25ml 白色具塞	化学需氧量	/
紫外可见分光光度计	Т6	氨氮、氮氧化物、六价铬	检定合格
红外分光测油仪	0IL460	石油类	检定合格
原子分光光度计	TAS-990AFG	总镍、总铁	检定合格
原子吸收分光光度计	TAS-990AFG	总铬	检定合格
烟尘测试仪	3212H-01	二氧化硫、氮氧化物	检定合格
气相色谱仪	7890A/GC112A	甲苯、二甲苯、乙酸乙酯、正丁醇、 非甲烷总烃	检定合格
烟气检测望远镜	10*50	烟气黑度	功能检查
噪声频谱分析仪	HS5660C	噪声	校准合格

8.3 人员资质

建设项目验收参与人员见表 8-3。

表 8-3 建设项目验收参与人员一览表

人员	姓名	职位/职称	上岗证编号
	陈一聪	检测报告编制人	JW008
	过树清	检测报告审核人	JW001
	张磊	环境监测员	JW005
	钱雅君	环境监测员	JW007
	戈涛	环境监测员	JW006
其他人员	吴斌	实验室主任	JW009
	戴琦	实验室检测员	JW010
	周芸	实验室检测员	JW011
	沈伟峰	实验室检测员	JW012
	杨晓婷	实验室检测员	JW013
	孙佳金	实验室检测员	JW014

8.4 水质监测分析过程中的质量保证和质量控制

水样的采集、运输、保存、实验室分析和数据计算的全过程均按照按照相关标准和技术规范的要求进行。

在现场监测期间,对废水入管网口的水样采取 25%平行样的方式进行质量控制。质量控制结果表明,本次水样的现场采集及实验室分析均满足质量控制要求。平行样品测试结果见表 8-4。

	平行样					
分析项目	2021. 2. 1	2021. 2. 1 (平行样)	相对偏差(%)	允许相对偏差(%)		
pH 值(无量纲)	6.74	6. 75	0.01 个单位	≤0.05 个单位		
化学需氧量(mg/L)	205	212	1.68	≤±10		
氨氮(mg/L)	8. 49	8. 49 8. 60 0. 64		≤±10		
			平行样			
分析项目	2021. 2. 2	2021. 2. 2 (平行样)	相对偏差(%)	允许相对偏差(%)		

6.82

192

8.89

0.01 个单位

1.29

0.34

≤0.05 个单位

 $\leq \pm 10$

 $\leq \pm 10$

表 8-4 废水入管网口平行样品测试结果表

6.81

197

8.5 气体监测分析过程中的质量保证和质量控制

pH 值(无量纲)

化学需氧量(mg/L)

氨氮(mg/L)

气样的采集、运输、保存、实验室分析和数据计算的全过程均按照按照相关 标准和技术规范的要求进行。

8.6 噪声监测分析过程中的质量保证和质量控制

噪声仪在使用前后用声校准器校准,校准读数偏差不大于 0.5 分贝。本次验 收测试校准记录见表 8-5。

差值 (dB) 是否符合要求 监测日期 测前 (dB) 测后 (dB) 2019. 11. 6 93.8 符合 93.8 0 2019. 11. 7 93.8 93.8 0 符合

表 8-5 噪声测试校准记录表

^{8.83} 注:表中监测数据引自嘉兴嘉卫检测科技有限公司监测报告 HJ190354-8 号。

9. 验收监测结果

9.1 生产工况

亚达管道系统股份有限公司本项目产品主要为不锈钢无缝钢管和喷漆管件, 亚达管道系统股份有限公司的生产负荷符合国家对建设项目环境保护设施竣工验 收监测工况大于 75%的要求。产量核实见表 9-1。

	れ り 1 足以次日	攻上她仅皿例为11円/	里似大仪	
	监测期间主要产品产量		 设计日产量	
监测日期	产量	负荷(%)	7 以11口厂里	
2019. 11. 6	不锈钢无缝钢管: 6.67 吨	80. 1	8. 33 吨	
2019. 11. 0	喷漆管件: 3件	100	3 件	
2019. 11. 7	不锈钢无缝钢管: 6.65 吨	79. 8	8. 33 吨	
2019. 11. 7	喷漆管件: 3件	100	3 件	
2021. 2. 1	不锈钢无缝钢管: 6.29 吨	75. 5	8. 33 吨	
2021. 2. 1	喷漆管件: 2件	66. 7	3 件	
2021. 2. 2	不锈钢无缝钢管: 6.71 吨	80. 6	8. 33 吨	
2021. 2. 2	喷漆管件: 3件	100	3 件	
2021. 4. 1	不锈钢无缝钢管: 7.56吨	90. 8	8. 33 吨	
2021. 4. 1	喷漆管件: 2件	66. 7	3 件	
2021. 4. 2	不锈钢无缝钢管: 7.38吨	88. 6	8. 33 吨	
2021. 4. 2	喷漆管件: 2件	66. 7	3 件	

表 9-1 建设项目竣工验收监测期间产量核实表

9.2 环境保护设施调试效果

9.2.1 环保设施处理效率监测结果

9.2.1.1 废水治理设施

验收监测期间,该项目的废水处理设施运行正常。在采样人员合理布置监测 点位,分析人员通过标准方法分析样品并得出监测数据的前提下,根据废水处理 设施进出口各污染因子浓度的日均值,得出环保设施的处理效率。车间废水处理 设施处理效率见表 9-2。

注: 日设计产量等于全年设计产量除以全年工作天数。

亚达管道系统股份有限公司年产 2500 吨不锈钢管生产线技改项目竣工环境保护验收监测报告

表 9-2 车间废水处理设施效率统计表

监测日期	监测点位	铁	总镍	总铬	石油类	氟化物	六价铬
血侧口朔	鱼侧点也	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	酸洗车间废水处理设施进口	872	355	133	4.06	19. 7	0.0636
2021. 2. 1/2021. 4. 1	酸洗车间废水处理设施出口	<0.03	<0.05	<0.03	1.76	1.16	0.0184
	废水处理设施效率(%)	99. 99	99. 99	99. 99	56. 6	94. 1	71. 1
2021. 2. 2/2021. 4. 1	酸洗车间废水处理设施进口	925	330	130	3.58	21.8	0.0612
	酸洗车间废水处理设施出口	<0.03	<0.05	<0.03	1.46	1.11	0.0175
	废水处理设施效率(%)	99. 99	99. 99	99. 99	59. 2	94. 9	71. 4
二	二日综合去除效率		99. 99	99. 99	57. 9	94. 5	71. 2

9.2.1.2 废气治理设施

验收监测期间,该项目的环保设施均运行正常。在采样人员合理布置监测 点位,分析人员通过标准方法分析样品并得出监测数据的前提下,根据各废气 处理设施进出口各污染因子的排放速率,得出环保设施的处理效率。废气处理 设施处理效率见表 9-3 和表 9-4。

监测日期	废气处理设施	氮氧化物	氟化物
	及《处垤以旭	平均处理效率(%)	平均处理效率(%)
2019. 11. 6	酸洗废气处理设施	89. 2	50. 9
2019. 11. 7	嵌 <i>沉</i> 及 又 生 以 ル	89. 2	53. 4
二日平均处	理效率 (%)	89. 2	92. 2

表 9-3 酸洗废气处理设施处理效率

表 9-4 喷漆废气处理设施处理效率

监测日期	 废气处理设	甲苯	二甲苯	乙酸丁酯	正丁醇
	施	平均处理效率	平均处理效率	平均处理效率	平均处理效率
	加色	(%)	(%)	(%)	(%)
2019. 11. 6	喷漆废气处	89. 0	91. 7	86. 4	96. 0
2019. 11. 7	理设施	88. 8	92. 2	86. 3	95. 4
二日平均处	二日平均处理效率(%)		92. 0	86. 4	95. 7

9.2.1.3 噪声治理设施

根据监测报告 HJ190354-3 号数据,企业噪声治理设施的降噪效果良好,厂界噪声均达到环评批复要求。

9.2.2 污染物排放监测结果

9.2.2.1 废水

该企业酸洗车间废水处理设施出口污染物六价铬、总镍和总铬浓度日均值均低于GB8978-1996《污水综合排放标准》表 1 标准;废水入管网口污染物 pH值、悬浮物、化学需氧量、石油类和氟化物浓度日均值(范围)均低于GB8978-1996《污水综合排放标准》表 4 三级标准,氨氮浓度日均值均低于DB33/887-2013《工业企业废水氮、磷污染物间接排放限值》表 1 中的其他企业间接排放限值,总铁浓度日均值均低于DB33/844-2011《酸洗废水排放总铁浓度限值》中的二级标准。监测结果见表 9-5 和表 9-6。

表 9-5 废水监测结果

来梓田明 采梓田明 監測点位置 样品性状位置 化学需量量 (mg/L)	衣りり及小皿例 3.5 次小皿例 3.5 次小皿 2.5 0 次												
10:26	平样日期	平栏时间		样品性状	化学需氧量		总镍	氨氮	总铬	总铁	悬浮物	石油类	
14:40	/K/T II 791	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	位置	1下加工/八	(mg/L)	(无量纲)	(mg/L)						
14:40	2021 2 1	10:26	また 中小	里 经 色 微 宏	/	/	364	/	134	874	/	4. 04	/
2021、2. 2 101:39 141:56	2021. 2. 1	14:40		- 空球 白城 在	/	/	346	/	132	870	/	4. 09	/
1:56	2021 2 2	10:39		里 经 名 德 宏	/	/	327	/	130	936	/	3. 56	/
10:42	2021. 2. 2	14:56	Į I	室绿色似件	/	/	332	/	130	914	/	3. 59	/
2021. 2. 1 12:36 機洗皮水 少理设施 10:51 大色較清 / 〈 人 <		09:16			/	/	<0.05	/	<0.03	<0.03	/	1.74	/
12:36	2021 2 1	10:42		工名标注	/	/	<0.05	/	<0.03	<0.03	/	1. 77	/
2021. 2. 2 中央理设施 出口	2021. 2. 1	12:36	また。小	1 儿巴权佣	/	/	<0.05	/	<0.03	<0.03	/	1. 77	/
2021. 2. 2		14:20			/	/	<0.05	/	<0.03	<0.03	/	1. 78	/
2021. 2. 2 10:51 12:30 14:15 大色较清 // // (0.05) // (0.03) (0.03) // 1.47 // 14:15 大行标准 // // (0.05) // (0.03) (0.03) // 1.47 // 14:15 大行标准 // // 1.0 // 1.5 // // // // 2021. 2. 1 10:47 皮水入管		09:19			/	/	<0.05	/	<0.03	<0.03	/	1.46	/
12:30	0001 0 0	10:51	ЩЦ	工名标注	/	/	<0.05	/	<0.03	<0.03	/	1. 47	/
大大 大大 大大 大大 大大 大大 大大 大	2021. 2. 2	12:30		无巴牧 <u>有</u>	/	/	<0.05	/	<0.03	<0.03	/	1. 47	/
技術情况 / 技術 / 技術 / 技術 /		14:15			/	/	<0.05	/	<0.03	<0.03	/	1.46	/
2021. 2. 1 09:05 废水入管 风口 废水入管 风口 202 6.71 / 8.15 / / 19 1.92 1.09 10:47 12:30 成本入管 风口 212 6.75 / 8.23 / / 18 1.93 1.12 11:30 14:02 213 6.73 / 8.35 / / 21 1.92 1.15 2021. 2. 2 99:16 09:16 <		执行	 「标准		/	/	1.0	/	1.5	/	/	/	/
2021. 2. 1 10:47 12:30 废水入管 阳口 淡黄色浑浊 212 6.75 / 8.23 / 9.20 8.23 / 9.20 / 18 1.93 1.12 12:30 14:02 14:02 213 6.73 / 8.35 / 9.20 1.15 2021. 2. 2 205 6.74 / 8.49 / 9.20 23 1.92 1.03 10:40 2 10:40 2 20 2.01 1.06 12:51 12:51 2 196 6.82 / 8.52 / 9.20 196 6.82 / 8.52 / 9.20 197 6.81 / 8.83 / 9.20 197 6.81 / 8.83 / 9.20 1.5 10 400 20 20 10:40 2 10:40 2 10:40 2 10:40 2 10:40 2 10:40 2		达杨	·情况		/	/	达标	/	达标	/	/	/	/
2021. 2. 1 12:30 岡口 淡黄色浑浊 213 6. 73 / 8. 35 / / 21 1. 92 1. 15 14:02 14:02 205 6. 74 / 8. 49 / / 23 1. 92 1. 03 10:40 50:16 50:16 50:16 50:16 50:16 50:16 6. 82 / 8. 32 / / 20:10 1.06 12:51 50:10		09:05			209	6. 71	/	8. 15	/	/	19	1. 92	1.09
12:30 M 口 213 6.73 / 8.35 / / 21 1.92 1.15 14:02 14:02 205 6.74 / 8.49 / / 23 1.92 1.03 10:40 大 50:16 10:40 大 8.32 / / 20 2.01 1.06 12:51 M 口 196 6.82 / 8.52 / / 24 2.02 1.25 188 6.79 / 8.66 / / 27 2.02 1.19 197 6.81 / 8.83 / / 15 2.02 1.01 执行标准	2021 2 1	10:47	废水入管	冰芸名宪油	212	6. 75	/	8. 23	/	/	18	1. 93	1. 12
2021. 2. 2 09:16 / 10:40 / 12:51 废水入管 / 月96 / 188 / 8.32 / 20 / 20 2.01 / 1.06 12:51 / 14:27 海口 196 / 6.82 / 8.52 / 24 2.02 / 1.25 188 / 6.79 / 8.66 / 27 2.02 / 1.19 197 / 6.81 / 8.83 / / 15 15 2.02 / 1.01 大大标准 500 / 6-9 1.0 / 35 1.5 / 10 400 / 20 20	2021. 2. 1	12:30	网口	狭貝巴件供	213	6. 73	/	8.35	/	/	21	1. 92	1. 15
2021. 2. 2 10:40 12:51 PM 14:27 废水入管 PM 188 196 6. 82		14:02			205	6. 74	/	8.49	/	/	23	1. 92	1.03
2021. 2. 2 12:51 岡口 淡夷色洋洪 188 6. 79 / 8. 66 / / 27 2. 02 1. 19 14:27 197 6. 81 / 8. 83 / / 15 2. 02 1. 01 大行标准 500 6-9 1. 0 35 1. 5 10 400 20 20		09:16			192	6.88	/	8.32	/	/	20	2. 01	1.06
12:51 M	2021 2 2	10:40	废水入管	冰芸布深油	196	6. 82	/	8. 52	/	/	24	2. 02	1. 25
执行标准 500 6-9 1.0 35 1.5 10 400 20 20	2021. 2. 2	12:51	网口	网口 淡東巴浑浊	188	6. 79	/	8.66	/	/	27	2. 02	1. 19
		14:27			197	6.81	/	8.83	/	/	15	2. 02	1.01
		执行			500	6-9	1. 0	35	1.5	10	400	20	20
		达杨	示情况		达标	达标	达标	达标	达标	达标	达标	达标	达标

注:表中监测数据引自监测报告 HJ190354-8 号。

表 9-6 废水监测结果

				A 100, 4 - mm				
采样日期	采样时间	监测点位置	样品性状	总镍	总铬	总铁	六价铬	氟化物
	.,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
2021. 4. 1	13:21		墨绿色浑浊	/	/	/	6. 31×10^{-2}	19. 4
2021. 4. 1	15:24	酸洗废水处理	至冰口什么	/	/	/	6.41×10^{-2}	20. 0
2021. 4. 2	13:26	设施进口	墨绿色浑浊	/	/	/	6. 17×10^{-2}	21. 8
2021. 4. 2	15:30		至冰口什么	/	/	/	6.08×10^{-2}	21.8
2021. 4. 1	13:18		无色较清	/	/	/	1.82×10^{-2}	1.18
2021. 4. 1	15:20	酸洗废水处理	九口权捐	/	/	/	1.87×10^{-2}	1.15
2021. 4. 2	13:22	设施出口	无色较清	/	/	/	1.73×10^{-2}	1.11
2021. 4. 2	15:27		九口权佣	/	/	/	1.77×10^{-2}	1.11
	执行标准				/	/	0.5	/
	达	标情况		/	/	/	达标	/
	13:10			<0.05	<0.03	<0.03	<0.004	/
2021. 4. 1	15:14	 废水入管网口	淡黄色微浑	<0.05	<0.03	<0.03	<0.004	/
2021. 4. 1	17:19		次與 口顺件	<0.05	<0.03	<0.03	<0.004	/
	19:20			<0.05	<0.03	<0.03	<0.004	/
	13:01			<0.05	<0.03	<0.03	<0.004	/
2021. 4. 2	15:07	 废水入管网口	淡黄色微浑	<0.05	<0.03	<0.03	<0.004	/
2021. 4. 2	17:13		火央 口灰什	<0.05	<0.03	<0.03	<0.004	/
	19:08			<0.05	<0.03	<0.03	<0.004	/
	执	行标准		1.0	1.5	10	0. 5	/
	达	标情况		达标	达标	达标	达标	/

注:表中监测数据引自监测报告 HJ190354-9 号

9.2.2.2 废气

(1) 有组织排放

该项目抛光废气排放口污染物颗粒物浓度及排放速率小时均值均低于GB16297-1996《大气污染物综合排放标准》表2二级标准。

酸洗废气处理设施排放口污染物氟化物和氮氧化物浓度及排放速率小时均值 均低于 GB16297-1996《大气污染物综合排放标准》表 2 二级标准。

喷漆废气处理设施出口苯系物(二甲苯、甲苯)、乙酯酯类(乙酸乙酯)、 非甲烷总烃(正丁醇)排放浓度均低于DB33/2146-2018《工业涂装工序大气污染 物排放标准》表 2 大气污染物特别排放限值。

天然气燃烧废气排放口污染物二氧化硫和氮氧化物浓度及排放速率小时均值均低于 GB16297-1996《大气污染物综合排放标准》表 2 二级标准,烟尘浓度均低于 GB9078-1996《工业炉窑大气污染物排放标准》中二级排放标准,同时天然气燃烧废气排放口颗粒物、二氧化硫、氮氧化物的排放浓度也满足《关于印发浙江省工业炉窑大气污染综合治理实施方案的通知》(浙环函[2019]315号)中颗粒物、二氧化硫、氮氧化物排放限值分别不高于 30、200、300 毫克/立方米的要求。

表 9-7 项目有组织监测结果

监测点位	采样日期	颗粒物 (mg/m³)	颗粒物 排放速率 (kg/h)	甲苯 (mg/m³)	甲苯 排放速率 (kg/h)	二甲苯 (mg/m³)	二甲苯 排放速率 (kg/h)	乙酸乙酯 (mg/m³)	乙酸乙酯排 放速率 (kg/h)	正丁醇 (mg/m³)	正丁醇排放 速率(kg/h)
抽业应与批选		9. 9	0. 141	/	/	/	/	/	/	/	/
抛光废气排放 口	2019. 11. 6	10. 2	0. 153	/	/	/	/	/	/	/	/
Н		10. 3	0. 152	/	/	/	/	/	/	/	/
抛光废气排放		10. 5	0. 146	/	/	/	/	/	/	/	/
	2019. 11. 7	10. 7	0. 150	/	/	/	/	/	/	/	/
		10.0	0. 142	/	/	/	/	/	/	/	/
喷漆废气处理		/	/	33. 3	0.607	39. 7	0. 724	19. 1	0. 348	21.6	0. 394
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	2019. 11. 6	/	/	32.8	0.622	39. 0	0. 739	18.8	0. 356	21.0	0. 398
又		/	/	32. 4	0.628	38. 3	0. 742	18. 9	0. 366	21.8	0. 422
喷漆废气处理		/	/	31. 7	0. 591	37. 6	0. 701	18. 4	0. 343	21.0	0. 391
设施出口	2019. 11. 6	/	/	31.0	0. 571	39. 0	0. 719	18. 3	0. 337	21.5	0. 396
汉旭山口		/	/	32.6	0.612	40.8	0. 766	18.6	0. 349	21. 2	0. 398
喷漆废气处理		/	/	3. 93	6. 65×10^{-2}	3. 50	5.92×10^{-2}	2.80	4. 74×10^{-2}	1.03	1.74×10^{-2}
设施进口	2019. 11. 7	/	/	3.89	6. 75×10^{-2}	3. 56	6. 18×10^{-2}	2.80	4.86×10^{-2}	0.92	1.60×10^{-2}
又		/	/	4. 04	7.08×10^{-2}	3. 51	6. 15×10^{-2}	2.85	4.99×10^{-2}	0.86	1.51×10^{-2}
喷漆废气处理		/	/	3.85	6.66×10^{-2}	3. 21	5. 55×10^{-2}	2.72	4. 70×10^{-2}	1.17	2.02×10^{-2}
・	2019. 11. 7	/	/	3.82	6. 51×10^{-2}	3. 37	5. 75×10^{-2}	2.75	4.69×10^{-2}	1.02	1.74×10^{-2}
区地山口		/	/	3.84	6. 70×10^{-2}	3. 35	5. 84×10^{-2}	2.72	4. 74×10^{-2}	0.98	1. 71×10^{-2}
执行标	示准	120	3. 5		2	0		50	/	60	/
达标情		达标	达标		达	标		达标	/	达标	/

注:表中监测数据引自监测报告 HJ190354-1a 号。

表 9-8 项目有组织监测结果

				**	X II II ALSA III IN II	7.1.				
监测点位	采样日期	颗粒物	颗粒物排放速	二氧化硫	二氧化硫排放速	烟气黑度	氮氧化物	氮氧化物排放	氟化物	氟化物排放速
血侧点型	水件口朔	(mg/m^3)	率(kg/h)	(mg/m^3)	率(kg/h)	(级)	(mg/m^3)	速率 (kg/h)	(mg/m^3)	率(kg/h)
工程层牌技术层排		1. 9	1.24×10^{-2}	<3	$<6.57\times10^{-3}$	<1	11	2.63×10^{-2}	/	/
大然气燃烧废气排 放口	2019. 11. 6	2. 0	1.33×10^{-2}	<3	<6.83×10 ⁻³	<1	15	3.42×10^{-2}	/	/
		2. 1	1.49×10^{-2}	<3	$\langle 7.22 \times 10^{-3}$	<1	13	3.61×10^{-2}	/	/
工机层燃烧应层排		1.8	1.10×10^{-2}	<3	<6. 05×10 ⁻³	<1	15	3.02×10^{-2}	/	/
天然气燃烧废气排	2019. 11. 7	2. 1	1.28×10^{-2}	<3	$\langle 6.22 \times 10^{-3}$	<1	14	3.11×10^{-2}	/	/
放口		5. 3	1.06×10^{-2}	<3	$\langle 6.34 \times 10^{-3}$	<1	10	1.90×10^{-2}	/	/
松州市与从田川 花		/	/	/	/	/	25. 8	0. 552	9.6	0. 205
酸洗废气处理设施 进口	2019. 11. 6	/	/	/	/	/	24. 7	0.516	9.2	0. 192
近口		/	/	/	/	/	25. 1	0.532	10. 0	0. 211
殿		/	/	/	/	/	24. 9	0. 533	10	0. 223
酸洗废气处理设施 出口	2019. 11. 6	/	/	/	/	/	25. 4	0. 531	9.6	0. 201
ЩН		/	/	/	/	/	25. 0	0.526	10	0. 211
松州 広/ 从田 / 1. 65		/	/	/	/	/	2.88	5.55×10^{-2}	0. 52	1.00×10^{-2}
酸洗废气处理设施 进口	2019. 11. 7	/	/	/	/	/	3. 01	5. 71×10^{-2}	0.50	9.50×10^{-3}
200		/	/	/	/	/	3. 19	6.07×10^{-2}	0.54	1. 03×10 ⁻²
松 沙 広 与 从 理 况 达		/	/	/	/	/	3. 11	5.80×10^{-2}	0.56	1.05×10^{-2}
酸洗废气处理设施 出口	2019. 11. 7	/	/	/	/	/	3.06	5.68×10^{-2}	0.52	9.67×10^{-3}
ЩП		/	/	/	/	/	3. 03	5.72×10^{-2}	0.50	9. 43×10^{-3}
执行标准	È	200	/	550	2.6	≤1	240	0.77	9.0	0. 10
达标情况	2	达标	/	达标	达标	达标	达标	达标	达标	达标
执行标准	È	30	/	200	/	/	300		/	/
达标情况	2	达标	/	达标	/	/	达标		/	/

注:表中监测数据引自监测报告 HJ190354-1a 号。

(2) 无组织废气监测

该项目涂装车间外非甲烷总烃无组织监控浓度最大值低于 GB37822-2019《挥发性有机物无组织排放控制标准》附录 A表 A.1 厂区内 VOCS 无组织排放限值特别排放限值。

厂界无组织废气污染物苯系物(甲苯、二甲苯)、乙酸乙酯、非甲烷总烃厂界无组织监控浓度最大值低于 DB33/2146-2018《工业涂装工序大气污染物排放标准》表 6 企业边界大气污染物浓度限值;颗粒物、氮氧化物和氟化物浓度最大值低于 GB16297-1996《大气污染物综合排放标准》表 2 无组织排放监控浓度限值。无组织排放监测点位见图 3-2 和图 3-3,监测期间气象参数见表 9-9,无组织排放监测结果见表 9-10、表 9-11 和表 9-12。

	农 5									
采样日期	采样时间	天气状况	温度(℃)	风向	气压 (kPa)	风速 (m/s)				
	09:00-11:00	多云	16	北风	101.9	2. 0				
2019. 11. 6	11:00-13:00	多云	20	北风	101.6	2. 3				
2019. 11. 0	14:00-15:00	多云	21	北风	101.6	2. 4				
	15:00-17:00	多云	20	北风	101.8	2. 7				
	09:00-11:00	多云	17	北风	102.2	2.6				
2019, 11, 7	11:00-13:00	多云	20	北风	101.9	2. 4				
2019. 11. 7	14:00-15:00	多云	21	北风	101.8	2.6				
	15:00-17:00	多云	17	北风	102.2	2. 7				
	09:04-10:16	阴	10	东风	102.9	1.4				
2021. 2. 1	11:02-12:15	阴	11	东风	102.8	1.6				
2021. 2. 1	13:05-14:18	阴	11	东风	102.7	1.9				
	15:08-16:20	阴	9	东风	102.9	1.3				
	09:02-10:15	阴	9	东风	102.9	1.8				
2021 2 2	11:03-12:16	阴	11	东风	102.8	2. 1				
2021. 2. 2	13:01-14:14	阴	12	东风	102. 7	2.3				
	15:05-16:17	阴	11	东风	102.9	2. 4				

表 9-9 监测期间气象参数

注:表中监测数据引自监测报告 HJ190354-1b、HJ190354-4b 号。

表 9-10 无组织废气排放监测结果

监测	采样	颗粒物	氮氧化物	甲苯	二甲苯	乙酸乙酯	正丁醇	氟化物
点位	日期	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)	$(\mu g/m^3)$
		0. 266	5.10×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	2019.	0. 264	5.40×10^{-2}	<0.0063	<0.0283	<0.012	< 0.0037	<0.5
	11.6	0. 256	5. 34×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
<i>+</i> □ =		0. 267	5. 21×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
东厂界		0.274	5. 33×10^{-2}	<0.0063	<0.0283	<0.012	< 0.0037	<0.5
	2019.	0. 272	5.27×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	11.7	0. 263	5.27×10^{-2}	<0.0063	<0.0283	<0.012	< 0.0037	<0.5
		0. 275	5.63×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
		0.464	5.98×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	2019.	0.462	6. 17×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	11.6	0.443	6.04×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
去厂田		0.466	6.24×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
南厂界		0. 487	6. 11×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	2019.	0.486	6. 17×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	11.7	0.465	6. 13×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
		0.489	6.03×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
		0. 343	5.61×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	2019.	0.350	5.68×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	11.6	0.324	5.57×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
西厂界		0.340	5.74×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
1 14/ 25		0.360	5. 48×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	2019.	0.367	5.55×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	11.7	0.340	5.60×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
		0.357	5.52×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
		0.104	4.96×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	2019.	0.112	5. 13×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	11.6	0.109	5.06×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
北厂界		0.102	5.04×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
10/ 20		0.106	4.79×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	2019.	0.114	4.83×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
	11.7	0. 111	5. 11×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
		0.104	4.96×10^{-2}	<0.0063	<0.0283	<0.012	<0.0037	<0.5
执行		1.0	0.12		. 0	1.0	/	20
达标 ¹		达标	达标	达	标	达标	/	达标

注:表中监测数据引自监测报告 HJ190354-1b 号。

表 9-11 涂装车间外监测结果

农。正依农中的万里的和水							
监测点位	采样日期	非甲烷总烃 (mg/m³)					
		2.14					
	2001 0 1	2. 16					
	2021. 2. 1	2. 16					
涂装车间外一米处		2. 12					
		2. 29					
	2021. 2. 2	2. 13					
		2.00					
		2. 13					
	执行标准	6. 0					
	达标情况	达标					

注:表中监测数据引自监测报告 HJ190354-4b 号。

表 9-12 无组织废气排放监测结果

监测点位	采样日期	非甲烷总烃 (mg/m³)
THE OWN ET	7811 1777	1.10
		1.17
	2021. 2. 1	1.15
		1.10
东厂界		1.03
		0.86
	2021. 2. 2	0.90
		0.75
		1.38
		1.36
	2021. 2. 1	1. 29
		1.28
南厂界		1.26
		1.20
	2021. 2. 2	1.07
		0.83
		1.93
		1.96
	2021. 2. 1	1.75
		1. 24
西厂界		1.92
	0001 0 0	1.88
	2021. 2. 2	1.86
		1.55
		1.35
	2021 2 1	1.06
	2021. 2. 1	1.07
 北厂界		1.35
		1.11
	2021. 2. 2	1.47
	2021. 2. 2	1. 32
		1.30
	执行标准	4.0
	达标情况	达标

注:表中监测数据引自监测报告 HJ190354-4b 号。

9.2.2.3 厂界噪声

亚达管道系统股份有限公司东、南、西、北厂界二日的昼间噪声均达到 GB12348-2008《工业企业厂界环境噪声排放标准》2 类标准。厂界噪声监测点位 见图 3-2,厂界噪声监测结果见表 9-13。

					r	
监测日期	监测点位	主要声源	监测时间	Leq [dB(A)]	执行标准	达标情况
	东厂界	机械噪声	11:13	58. 0	60	达标
2020, 5, 9	南厂界	机械噪声	11:18	57. 3	60	达标
2020. 5. 9	西厂界	机械噪声	11:29	57. 1	60	达标
	北厂界	机械噪声	11:33	57. 7	60	达标
	东厂界	机械噪声	11:10	56. 0	60	达标
2020, 5, 10	南厂界	机械噪声	11:17	56. 5	60	达标
2020. 5. 10	西厂界	机械噪声	11:24	58. 6	60	达标
	北厂界	机械噪声	11:28	57. 9	60	达标

表 9-13 厂界噪声监测结果

注:表中监测数据引自监测报告 HJ190354-3 号。

9.2.2.4 固体废物

亚达管道系统股份有限公司产生的危险废物放置于危废房内,废切削液(900-007-09)、废油(900-007-09)委托温州云光废油处理有限公司进行处置;槽渣(336-064-17)、沉淀污泥(336-064-17)、漆渣(900-252-12)委托浙江金泰莱环保科技有限公司处置;目前企业废气处理设施改变,饱和活性炭(900-039-49)不再产生;含油抹布及手套混入生活垃圾(根据《国家危险废物名录》(2016 版)危险废物豁免管理清单第 9 条:废弃的含油抹布、劳保用品全过程不按危险废物管理,混入生活垃圾)。

一般固废集尘灰和边角料收集后外卖综合利用;生活垃圾定点存放于加盖垃圾桶内,环卫部门定时清运。

9.2.2.5 污染物排放总量核算

(1) 废水污染物年排放量

根据企业 2019 年 6 月-2019 年 8 月水费发票核算,用水量为 6971 吨,年用水量为 27924 吨,根据计算废水年排放量为 16423.2 吨。(见图 3-4)。

根据企业的废水排放量和嘉兴市联合污水处理有限责任公司废水排放标准 (该污水处理厂排放标准执行 GB8978-1996《污水综合排放标准》表 4 二级城镇 污水处理厂排放标准,目前该污水处理厂已提标,排放标准执行 GB 18918-2002 《城镇污水处理厂污染物排放标准》一级 A 标准),计算得出该企业废水污染因 子排入环境的排放量。废水监测因子排放量见表 9-14。

表 9-14 全厂废水监测因子年排放量

项目	化学需氧量	氨氮	
入环境排放量(吨/年)	0.821	0. 0821	

(2) 颗粒物、VOCs、二氧化硫、氮氧化物年排放量

该公司抛丸机、退火炉、酸洗塔正常运行,抛丸机运行时间约为 1800 小时,退火炉运行时间约为 600 小时,酸洗塔运行时间约为 2400 小时。根据监测报告数据,计算得出该企业废气污染因子年排放量。退火炉污染因子颗粒物平均排放速率为 0.0125kg/h,二氧化硫平均排放速率为 6.54×10 kg/h,氮氧化物平均排放速率为 0.0295kg/h;抛丸机污染因子颗粒物平均排放速率为 0.147kg/h;酸洗塔污染因子氮氧化物平均排放速率为 0.0576kg/h(计算方式=平均排放速率×废气处理设施运行时间)。喷漆房正常运行,运行时间约为 600 小时。根据监测报告数据,计算得出该企业废气污染因子年排放量。污染因子甲苯平均排放速率为 0.0672kg/h,二甲苯平均排放速率为 0.0590kg/h,乙酸乙酯平均排放速率为 0.0479kg/h,正丁醇平均排放速率为 0.0172kg/h。废气监测因子排放量见表 9-15。

项目	颗粒物	氮氧化物	二氧化硫	甲苯	二甲苯	乙酸乙酯	正丁醇				
排放口	(吨/年)	(吨/年)	(吨/年)	(吨/年)	(吨/年)	(吨/年)	(吨/年)				
天然气燃烧废气排放口	0.00750	0.0177	0.004	/	/	/	/				
抛光废气排放口	0. 266	/	/	/	/	/	/				
酸洗塔废气出口	/	0.0576	/	/	/	/	/				
喷漆废气出口	/	/	/	0.0404	0.0354	0. 0287	0.0103				
合计	0. 274	0.075	0.004	0. 115							

表 9-15 废气污染因子年排放量

(3) 总量控制

该企业全厂废水排放总量为 16423. 2 吨/年, 化学需氧量排放总量为 0.821 吨/年, 氨氮排放总量为 0.0821 吨/年, 达到全厂总量控制指标(废水排放量 16705 吨/年, 化学需氧量 0.835 吨/年, 氨氮 0.0835 吨/年)。

本项目颗粒物排放总量为 0. 274 吨/年,二氧化硫排放总量为 0. 004 吨/年, 氮氧化物排放总量为 0. 075 吨/年,VOCs 排放总量为 0. 115 吨/年,达到本项目总 量控制指标(颗粒物 0. 30 吨/年,二氧化硫 0. 008 吨/年,氮氧化物 0. 74 吨/年, VOCs 0. 168 吨/年)。

10. 验收监测结论

10.1 环境保护设施调试效果

根据试生产期间的调试运行情况,本项目环保治理设施均能正常运行。竣工 验收废水监测数据能达到相关排放标准;项目污染治理及排放基本落实了环评及 批复要求,对周边环境不会造成明显的影响。

10.1.1 环保设施处理效率监测结果

该项目酸洗废水处理设施去除效率分别为铁 99.99%、总镍 99.99%、总铬 99.99%、六价铬 71.2%、氟化物 94.5%和石油类 57.9%。酸洗废气处理设施处理效率分别为氮氧化物 89.2%和氟化物 92.2%。喷漆废气处理设施处理效率分别为甲苯 88.9%、二甲苯 92.0%、乙酸丁酯 86.4%和正丁醇 95.7%。

10.1.2 废水监测结果

该项目酸洗车间废水处理设施出口污染物六价铬、总镍和总铬浓度日均值均低于 GB8978-1996《污水综合排放标准》表 1 标准;废水入管网口污染物 pH 值、悬浮物、化学需氧量、石油类和氟化物浓度日均值均低于 GB8978-1996《污水综合排放标准》表 4 三级标准,氨氮浓度日均值均低于 DB33/887-2013《工业企业废水氮、磷污染物间接排放限值》表 1 中的其他企业间接排放限值,总铁浓度日均值均低于 DB33/844-2011《酸洗废水排放总铁浓度限值》中的二级标准。

10.1.3 废气监测结果

该项目抛光废气排放口污染物颗粒物浓度及排放速率小时均值均低于GB16297-1996《大气污染物综合排放标准》表2二级标准。

酸洗废气处理设施排放口污染物氟化物和氮氧化物浓度及排放速率小时均值 均低于 GB16297-1996《大气污染物综合排放标准》表 2 二级标准。

喷漆废气处理设施出口苯系物(二甲苯、甲苯)、乙酯酯类(乙酸乙酯)、 非甲烷总烃(正丁醇)排放浓度均低于 DB33/2146-2018《工业涂装工序大气污染 物排放标准》表 2 大气污染物特别排放限值。

天然气燃烧废气排放口污染物二氧化硫和氮氧化物浓度及排放速率小时均值 均低于GB16297-1996《大气污染物综合排放标准》表2二级标准,烟尘浓度均低 于GB9078-1996《工业炉窑大气污染物排放标准》中二级排放标准,同时天然气 燃烧废气排放口颗粒物、二氧化硫、氮氧化物的排放浓度也满足《关于印发浙江 省工业炉窑大气污染综合治理实施方案的通知》(浙环函[2019]315号)中颗粒物、二氧化硫、氮氧化物排放限值分别不高于30、200、300毫克/立方米的要求。

该项目涂装车间外非甲烷总烃无组织监控浓度最大值低于 GB37822-2019《挥发性有机物无组织排放控制标准》附录 A表 A.1 厂区内 VOCS 无组织排放限值特别排放限值。

厂界无组织废气污染物苯系物(甲苯、二甲苯)、乙酸乙酯、非甲烷总烃厂界无组织监控浓度最大值低于DB33/2146-2018《工业涂装工序大气污染物排放标准》表6企业边界大气污染物浓度限值;颗粒物、氮氧化物和氟化物浓度最大值低于GB16297-1996《大气污染物综合排放标准》表2无组织排放监控浓度限值。

10.1.4 厂界噪声监测结果

亚达管道系统股份有限公司东、南、西、北厂界二日的昼间噪声均达到 GB12348-2008《工业企业厂界环境噪声排放标准》2类标准。

10.1.5 固(液)体废物监测结果

亚达管道系统股份有限公司的固体废物处置基本符合 GB18599-2001《一般工业固体废物贮存、处置场污染控制标准》和 GB18597-2001《危险废物贮存污染控制标准》的要求。

10.1.6 总量控制结论

亚达管道系统股份有限公司全厂废水排放总量为 16423. 2 吨/年, 化学需氧量排放总量为 0.821 吨/年, 氨氮排放总量为 0.0821 吨/年, 达到全厂总量控制指标 (废水排放量 16705 吨/年, 化学需氧量 0.835 吨/年, 氨氮 0.0835 吨/年)。

本项目颗粒物排放总量为 0. 274 吨/年,二氧化硫排放总量为 0. 004 吨/年, 氮氧化物排放总量为 0. 075 吨/年,VOCs 排放总量为 0. 115 吨/年,达到本项目总 量控制指标(颗粒物 0. 30 吨/年,二氧化硫 0. 008 吨/年,氮氧化物 0. 74 吨/年, VOCs 0. 168 吨/年)。

10.2 验收监测总结论

亚达管道系统股份有限公司年产 2500 吨不锈钢管生产线技改项目达到《建设项目竣工环境保护验收技术指南 污染影响类》要求,满足竣工验收条件。

建设项目工程竣工环境保护"三同时"竣工验收登记表

填表单位(盖章):

填表人(签字):

项目经办人(签字):

	项目名称	亚达管道系统股份有限公司年产 2500 吨不锈 钢管生产线技改项目			吨不锈	项目代码	/	设地点	嘉兴市南湖区新丰镇新大公路 399 号						
建设项目	行业类别		C31 黑色	金属冶炼及压	延加工业		建设性质 □新建 □改扩建 ☑技2			☑技术改	支术改造				
	设计生产能力	年产 2500	吨不锈钢管、	1000 件管件 [内壁喷涂	实际生产能力	年产 2500	吨不锈钢管 喷泡	管、1000 件管件内壁 涂	环评单位 浙江省工		育工业环保i	业环保设计研究院有限公司		
	环评文件审批机关	嘉兴市南湖区环境保护局					审批文号		南环建函[2015]94	南环建函[2015]94 号		环评文件类型		报告表	
	开工日期	2015. 10					竣工日期 2016.05		2016. 05	排污许可证申令		申 领时间	2020年7月31日		
	环保设施设计单位	杭州兴洋环保科技有限公司					环保设施施工单位 杭州兴洋环保科技有际		限公司	公司 本工程排污许可证编号		9133040077937956XR 001Q			
	验收单位	亚达管道系统股份有限公司					环保设施出	ǐ测单位	嘉兴嘉卫检测科技有	限公司	验收监测时工况		详见表 9-1		
	投资总概算(万元)	3000					环保投资总标	既算 (万元)	75		所占比例(%)		2.50		
	实际总投资(万元)	3000					实际环保投	资 (万元)	85		所占比例(%)		2.83		
	废水治理(万元) 10	0 废气治理(万元) 60 噪声治理(万元)				5) 10	固体废物治理(万元)		5	绿化及	及生态 (万元)	/	其他(万元) /		
	新增废水处理设施能力						新增废气处理设施能力		70000Nm³/h		年平均工	年平均工作时		2400h/a	
	运营单位	亚达管道系统股份有限公司 运营单位社会统一				言用代码(或组	织机构代码	号) 9133040077937956XR		验收时间		2019. 11. 6-12. 6			
污染物排放达标与总量控制(工业建设项	污染物	原有排 放量(1)	本期工程 实际排放 浓度(2)	本期工程 允许排放 浓度(3)	本期工程 产生量 (4)	本期工程 自身削减 量(5)	本期工程实际排放量(6)	本期工程 核定排放 总量(7)	→ 別上程"以新代 → 別 削減量 (8)	全厂等 排放总	总量 排放总量		衡替代 (11)	排放增减量 (12)	
	废水	——	——	——			——			1.642	232 1.6705 —				
	化学需氧量			50						0. 82	21 0.835	_			
	$NH-N_3$			5						0.08	0. 0835	_	_		
	石油类	——	——												
	废气		——												
	二氧化硫		——	200			0.004	0.008			0.003	_		0.004	
	烟尘			30/120			0. 274	0. 3			0.13	_		0. 274	
	VOCs		——				0.115	0.168			0.100			0.115	
	氮氧化物			240/300			0.075	0.74			- 1. 179			0.075	
项	工业固体废物		——————————————————————————————————————			<u> </u>							— 	——	

注: 1、排放增减量: (+)表示增加,(-)表示减少; 2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1); 3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升; 大气污染物排放浓度——毫克/立方米; 水污染物排放量——吨/年; 大气污染物排放量——吨/年。